Medium-size cyclophanes, 77. ${ }^{1}$ Synthesis and addition of bromine to syn-[2.n]meta-cyclophan-1-enes

Tatsunori Saisyo, Mikiko Shiino, Jian-yong Hu and Takehiko Yamato*
Department of Applied Chemistry, Faculty of Science and Engineering, Saga University, Honjo-machi 1, Saga 840-8502, Japan

McMurry cyclisation of 1,n-bis(3-formyl-2-methoxyphenyl)alkanes afforded syn-dimethoxy[2.n]metacyclophan-1-enes, in which cis-addition of bromine to the bridged double bond in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was observed.

Keywords: cyclophanes, [2.n]metacyclophan-1-ene, McMurry reaction, conformation, bromination, cis-addition

Although the parent [2.2]metacyclophane (MCP = metacyclophane) was first reported as early as 1899 by Pellegrin, ${ }^{2}$ the synthesis of syn-[2.2]MCP was not realised until 85 years later. Mitchell et al. ${ }^{3}$ have successfully prepared syn-[2.2]MCP at low temperature by using (arene)chromiumcarbonyl complexation to control the stereochemistry. Later, Itô et al. ${ }^{4}$ have also isolated and characterised syn-[2.2]MCP without complexation. However, syn-[2.2]MCP isomerises readily to the anti-isomer above $0^{\circ} \mathrm{C}$. On the other hand, Boekelheide ${ }^{5}$ and Staab^{6} succeeded in synthesising intra-annularly substituted syn-[2.2]MCP-1-enes, respectively. However, reports on synthesis and reactions of syn-[2.n]MCP-1-enes have not been published so far.
Cram et al. reported ${ }^{7}$ the addition of bromine across the bridging double bond of [2.2]paracyclophan-1-ene which afforded the corresponding cis adduct. Similarly, we previously found ${ }^{8}$ that addition of bromine to anti-dimethyl[2.3]MCP-1-ene afforded the cis adduct resulting from addition to the bridging double bond. A similar reaction with anti-dimethyl[2.4]MCP-1-ene, however, gave a mixture of the cis adduct formed by the addition to the bridging double bond and the trans adduct containing a brominated internal methyl group. Therefore, the orientation of the addition of bromine to anti-dimethyl[2.4]MCP-1-ene is ambiguous since the internal bromomethyl group might affect the orientation of the bromine addition. We have reported that the bromination of anti-dimethoxy[2.4]MCP-1-ene affords exclusively cisadduct to the bridged double bond since formation of a brominated internal methyl group is not possible. ${ }^{9}$ Thus, there is substantial interest in the bromination of longer methylene bridged dimethoxy[2.n] $\mathrm{MCP}-1$-enes with bromine.
Recently, we have reported the preparation of 1,2dimethyl[2.n] MCP-1-enes ${ }^{10}$ using the reductive coupling of carbonyl compounds by low-valent titanium (the McMurry reaction ${ }^{11,12}$) as a key step. We now report on the synthesis of syn- and anti-[2.5]- and -[2.6]MCP-1-ene using the lowvalent titanium induced McMurry reaction and the addition of bromine to the bridged double bond.

Results and discussion

1,5-Bis(5-tert-butyl-2-methoxyphenyl)pentane 1a and 1,6-bis(5-tert-butyl-2-methoxyphenyl)hexane 1b have been prepared according to our previous paper. ${ }^{13}$ The TiCl_{4} formylation of compounds 1a and $\mathbf{1 b}$ with dichloromethyl methyl ether at $20^{\circ} \mathrm{C}$ gave the desired $1, n$-bis(5 -tert-butyl-3-formyl-2-methoxyphenyl)alkanes 2a and $\mathbf{2 b}$ in 42 and 67% yields, respectively.

1,n-Bis(5-tert-butyl-3-formyl-2-methoxyphenyl)alkanes (2) was subjected to reductive coupling by the McMurry reaction following the improved Grützmacher's procedure ${ }^{14}$ (Scheme 1). Thus, the reductive coupling reaction of 1,5 -bis (5-tert-butyl-3-formyl-2-methoxyphenyl)pentane 2a carried

[^0]
anti-conformation

syn-conformation

Fig. 1 Possible conformations of [2.n]metacyclophan-1-enes.
out using $\mathrm{TiCl}_{4}-\mathrm{Zn}$ in refluxing THF under the high dilution conditions afforded the desired compound syn-5,16-di-tert-butyl-8,19-dimethoxy[2.5]MCP-1-ene (syn-3a) in 27\% along with anti-12-endo-hydroxy-13-endo-hydroxy-8,16-di-tert-butyl-11,19-dimethoxy[5.2]MCP (meso-anti-4a) in 32% yield. However, the formation of the another possible conformational isomer anti-3a was not observed. Similarly, the reductive coupling reaction of 1,6-bis(5-tert-butyl-3-formyl-2-methoxyphenyl)hexane 2b carried out under the same conditions described above afforded 5,17-di-tert-butyl-8,20-dimethoxy[2.6]MCP-1-ene (3b) in 15% along with anti-13-endo-hydroxy-14-endo-hydroxy-9,17-di-tert-butyl-12,20-dimethoxy[6.2]MCP (meso-anti-4b). However, several attempted isolations of pure meso-anti-4b failed. We have converted crude meso-anti-4b to the corresponding diacetate meso-anti-5b by treatment with acetic anhydride and pyridine at room temperature in 16% yield from the above McMurry coupling reaction. Interestingly, the ${ }^{1} \mathrm{H}$ NMR spectrum of 3b shows two kinds of methoxy protons, each as a singlet. By careful column chromatography (silica gel, Wako C-300), two isomers, anti-3b and syn-3b, are separated in 5 and 10% yield, respectively. They are thermally stable and do not interconvert at $180^{\circ} \mathrm{C}$ in DMSO solution and at $400^{\circ} \mathrm{C}$ in the solid state.

The structures of products $\mathbf{3 a}$ and $\mathbf{3} \mathbf{b}$ were determined on the basis of their elemental analyses and spectral data. Especially, the mass spectral data for $\mathbf{3 a}$ and $\mathbf{3 b}\left(\mathrm{M}^{+}=420\right.$ for $\mathbf{3 a}$ and both $\mathrm{M}^{+}=434$ for syn-3b and anti-3b) strongly support the cyclic structure. The conformations of $\mathbf{3 a}$ and $\mathbf{3 b}$ were readily apparent from their ${ }^{1} \mathrm{H}$ NMR spectrum. For example, ${ }^{1} \mathrm{H}$ NMR spectrum of anti-3b in CDCl_{3} shows a singlet at $\delta 3.13$ ppm for methoxy protons, a singlet at $\delta 6.56 \mathrm{ppm}$ for olefinic protons, and a pair of doublets ($J=2.4 \mathrm{~Hz}$) at $\delta 7.02,7.03$ ppm for aromatic protons. Thus the methoxy protons should show an upfield shift at $\delta 3.13 \mathrm{ppm}$ due to the ring current of the opposite aromatic ring. ${ }^{15,16}$ The structure of the synconfomer is also readily assigned from the chemical shift of the methoxy protons at $\delta 3.67 \mathrm{ppm}$. Also the tert-butyl proton of $\operatorname{syn} \mathbf{- 3 b}$ was observed at a higher field, $\delta 1.11 \mathrm{ppm}$, due to the shielding effect of the benzene ring. The aromatic protons of syn-conformer syn-3b are observed much higher field ($\delta 6.51,6.81 \mathrm{ppm}$) than those of anti-conformer anti-3b at $\delta 7.02$ and 7.03 ppm . The above data show that the structure of anti- $\mathbf{3 b}$ is the anti-conformer, whereas the structure of syn-3b

Scheme 1
is the syn-conformer. We have assigned the structure of syn-3a in a similar fashion. Thus, the structure of the syn-confomer is also readily assigned from the chemical shift of the internal methoxy protons as a singlet at $\delta 3.70 \mathrm{ppm}$. Interestingly, the bridged methylene protons for $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$ in the compound syn-3a are located in different spaces with one of them folded into the π-cavity formed by two benzene rings. Thus, a higher field signal at $\delta-0.90-0.10 \mathrm{ppm}$ was observed. The individual peaks of the methylene protons for middle CH_{2} in the pentane bridge do not coalesce below $140^{\circ} \mathrm{C}$ in $\left[\mathrm{D}_{6}\right]$ DMSO and the energy barrier to conformational wobbling is above $25 \mathrm{kcal} \mathrm{mol}^{-1}$.
We previously assigned ${ }^{17}$ the ${ }^{1} \mathrm{H}$ NMR signals of 1 -exo-5,13-trichloro-8,16-dimethyl[2.2]MCP, and we have assigned the ${ }^{1} \mathrm{H}$ NMR signals of meso-anti-4a in a similar fashion. Thus, the structure of the anti-confomer is also readily assigned from the chemical shift of the internal methoxy protons and the bridged methine protons both as a singlet at $\delta 3.32$ and 4.85 ppm , respectively. The other two aromatic protons was observed at $\delta 6.93$ and 7.47 ppm ; the latter protons are in a strongly deshielding region of oxygen atom of endo-OH on ethylene bridge. These observations are strongly supported that the two OH groups are endo, endo-arrangement and therefore, $\mathbf{4 a}$ is found to be trans-diol. Similarly, the structures of meso-anti-4b and meso-anti-5b were assigned to be transdiol and trans-diacetate with endo, endo-arrangement.
Attempted bromination of syn-5,16-di-tert-butyl-8,19-dimethoxy [2.5]MCP-1-ene (syn-3a) with 1.1 equiv. of bromine carried out in a dichloromethane solution at room temperature for 1 h led to the stereoselective cis-addition to the bridged double bond to afford meso-syn-6a (endo-endo-Br) in 60\% yield along with the starting compound in 40%. Bromination of syn-3a carried out with an equimolar amount of benzyltrimethylammonium
tribromide ($\mathrm{BTMA} \mathrm{Br}_{3}$) in dichloromethane for 1 h , which was recently found to be a convenient solid brominating agent, ${ }^{18}$ resulted to afford same bromine adduct meso-syn-6a in 96\% yield along with the recovery of the starting compound syn3a in 4\%. (Scheme 2). Similarly, treatment of syn-5,17-di-tert-butyl-8,20-dimethoxy[2.6]MCP-1-ene (syn-3b) with an equimolar amount of $B T M A \mathrm{Br}_{3}$ under the reaction conditions above led to the stereoselective cis-addition to the bridged double bond to afford meso-syn-6b in 93% yield.

The structures of the products obtained in the bromine addition of syn-3 were determined from their elemental analyses and spectral data. On the basis of the spectral data, meso-syn-6a and meso-syn- $\mathbf{6 b}$ are assigned the structures, syn-12-endo-bromo-13-endo-bromo-8,16-di-tert-butyl-11,19dimethoxy[5.2]MCP and syn-13-endo-bromo-14-endo-bromo-9,17-di-tert-butyl-12,20-dimethoxy[6.2]MCP, respectively. ${ }^{1} \mathrm{H}$ NMR spectrum of meso-syn- $\mathbf{6 a}$ in CDCl_{3} shows a singlet at δ 6.55 ppm for methine protons and a doublet $(J=2.4 \mathrm{~Hz})$ at $\delta 7.56 \mathrm{ppm}$ for two aromatic protons which are in a strongly deshielding region of endo- Br atom on ethylene bridge. These data are strongly supported that the two Br atoms are endoand endo-arrangement and therefore, meso-syn-6a is found to be cis-adduct to the bridged double bond. Similarly, ${ }^{1} \mathrm{H}$ NMR spectrum of meso-syn- $\mathbf{6 b}$ in CDCl_{3} shows a singlet at $\delta 6.33$ ppm for methine protons, a doublet $(J=2.4 \mathrm{~Hz})$ at $\delta 7.55 \mathrm{ppm}$ for two aromatic protons which are in a strongly deshielding region of endo- Br atom on ethylene bridge. Thus, the two Br atoms are both endo-arrangement and therefore, meso-syn-6b is found to be cis-adduct to the bridged double bond.

Cram et al. reported ${ }^{7}$ that [2.2]paracyclophan-1-ene underwent solely cis-addition of bromine to give cis-1,2dibromo[2.2]paracyclophane and the stereospecificity and stereochemical direction of this reaction was explained

Scheme 2

by the formation of highly strained phenonium ions as intermediates.
In the present system, the fact that cis-adduct meso-syn6a (endo-endo- Br) is exclusively obtained is explained on the basis of phenonium ions such as \mathbf{A} as an intermediate in the sequences rather than the nonclassical bromonium ion intermediate $\mathbf{B}^{19,20}$ in the bromine addition process. The steric effect of the internal methoxy groups for the exo- Br addition to the carbocation intermediate \mathbf{A} or the presence of the four membered transition state rather than the nonclassic bromonium ion intermediate \mathbf{B} in the process of bromination might be also considered. The absence of \mathbf{B} might be attributed to the strain of this intermediate. It was also found in spite of being the number of methylene units within the polymethylene bridge increased from five to six, bromine addition to the bridging double-bond proceeds exclusively via cis-addition, different from trans-addition as has been reported for bromine addition in normal alkene systems. ${ }^{19}$

In contrast, bromination of anti-5,17-di-tert-butyl-8,20-dimethoxy[2.6]MCP-1-ene (anti-3b) with 1.1 equiv. of BTMA Br_{3} in dichloromethane at room temperature for 1 h afforded a mixture of cis-adduct rac-anti- $\mathbf{6 b}$ (endo-exo- Br) and transadduct meso-anti- 6b (exo-exo- Br) in the ratio of $80: 20$ in 71% yield (Scheme 3).

The structures of rac-anti-6b and meso-anti-6b were determined from their elemental analyses and spectral data. The ${ }^{1} \mathrm{H}$ NMR spectrum of rac-anti- $\mathbf{6 b}$ in CDCl_{3} shows two sets of doublets $(J=3.9 \mathrm{~Hz})$ at $\delta 5.51$ and 5.78 ppm for bridged methine protons and a doublet $(J=2.2 \mathrm{~Hz})$ at $\delta 8.04 \mathrm{ppm}$ for one aromatic proton which is in a region strongly deshielded by the endo- Br atom on the ethylene bridge. These data strongly support the fact that the two Br atoms are in an endo- and exo-arrangement and therefore, rac-anti-6b is found to be cis-adduct to the bridging double bond. In contrast, ${ }^{1} \mathrm{H}$ NMR spectrum of meso-anti- $\mathbf{6 b}$ in CDCl_{3} shows a singlet at $\delta 5.98 \mathrm{ppm}$ for methine protons and no

A

B

Fig. 2

(71\%)

rac-anti-6b
(endo-exo)

(exo-exo)
(exo-exo)

Scheme 3

Fig. 3
deshielded aromatic protons were observed at $\delta 6.95$ and 7.43 ppm , but the methoxy protons were observed at $\delta 3.65 \mathrm{ppm}$, which is in a region strongly deshielded by the exo- Br atom on the ethylene bridge. These data are strongly supported that the two Br atoms are both exo-arrangement and therefore, meso-anti-6b is found to be trans-adduct to the bridged double bond.
As mentioned previously, we have reported the bromination of anti-dimethoxy[2.4]MCP-1-ene to afford exclusively cisadduct to the bridged double bond to the bridging double bond. ${ }^{7}$ The fact that cis-adduct rac-anti-6b is mainly obtained indicates the preferential existence of the carbocation intermediate \mathbf{C} rather than the nonclassic bromonium ion intermediate \mathbf{D} in the process of bromination. ${ }^{19,20}$ The less formation of \mathbf{D} might be attributed to the strain of this intermediate. When the number of methylene bridge are increased by two, the cis-addition of anti-[2.6]MCP-1-ene (anti-3b) with bromine competed with trans-addition due to the decrease of strain of the intermediate \mathbf{D} (Fig. 3). Thus, the ratio of cis-adduct to trans-adduct decreased by increasing the number of the methylene group of the present anti-[2.n]MCP1 -enes anti-3.
This result is quite different from that obtained with the addition of bromine to the corresponding syn-dimethoxy[2.6]MCP-1-ene (syn-3b), which afforded exclusively cis-adduct to the bridged double bond.

Conclusions

We have demonstrated a convenient preparation of synand anti-dimethoxy[2.5]- and [2.6]MCP-1-ene $\mathbf{3}$ by McMurry reaction of the corresponding $1, n$-bis(3-formyl-2-methoxyphenyl)alkanes 2. The bromination of syn-dimethoxy[2.5]- and [2.6]- MCP-1-ene $\mathbf{3}$ with BTMABr_{3} afforded exclusively cis-adduct to the bridged double bond. In contrast, anti-dimethoxy[2.6]MCP-1-ene resulted to afford a mixture of cis- and trans-adducts to the bridged double bond. The different stereoselectivity for the bromine addition in syn- and anti-dimethoxy[2.5]- and [2.6]MCP1 -enes 3 was observed. Further studies on the chemical properties of syn- and anti-dibromodimethoxy[n.2]MCPs 6 are now in progress.

Experimental

${ }^{1} \mathrm{H}$ NMR spectra were recorded at 300 MHz on a Nippon Denshi JEOL FT-300 NMR spectrometer in deuteriochloroform with $\mathrm{Me}_{4} \mathrm{Si}$ as an internal reference. IR spectra were measured as KBr pellets on a Nippon Denshi JIR-AQ2OM spectrometer. Mass spectra were obtained on a Nippon Denshi JMS-01SA-2 spectrometer at 75 eV using a direct-inlet system.

Materials

Preparations of 1,n-bis(5-tert-butyl-2-methoxyphenyl)alkanes $\mathbf{1}$ has been previously described. ${ }^{13}$

Preparation of 1,n-bis(5-tert-butyl-3-formyl-2-methoxyphenyl) alkanes (2)-typical procedure
To a solution of 1,5-bis(5-tert-butyl-2-methoxyphenyl)pentane (1a) $(3.42 \mathrm{~g}, 9 \mathrm{mmol})$ and $\mathrm{Cl}_{2} \mathrm{CHOCH}_{3}\left(2.28 \mathrm{~cm}^{3}, 25.2 \mathrm{mmol}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$ was added a solution of $\mathrm{TiCl}_{4}\left(6.0 \mathrm{~cm}^{3}\right.$, $54.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. After the reaction mixture was stirred at room temp. for 2 h , it was poured into a large amount of ice/water $\left(200 \mathrm{~cm}^{3}\right)$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 100 \mathrm{~cm}^{3}\right)$. The combined extracts were washed with water, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was chromatographed over silica gel (Wako $\mathrm{C}-300,200 \mathrm{~g}$) with CHCl_{3} as eluent to give crude $\mathbf{2 a}(4.0 \mathrm{~g}$, $95 \%)$. Recrystallisation from hexane gave $1.76 \mathrm{~g}(42 \%)$ of 1,5-bis (5-tert-butyl-3-formyl-2-methoxyphenyl)pentane (2a): Colourless prisms (hexane), m.p. $89-90^{\circ} \mathrm{C} ; \mathrm{v}_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}: 1692(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right): 1.31(18 \mathrm{H}, \mathrm{s}, t \mathrm{Bu}), 1.42-1.53\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.64-1.70$ $\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.65-2.71\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.87(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 7.47(2 \mathrm{H}$, d, $J=2.4 \mathrm{~Hz}, \operatorname{Ar} H), 7.71(2 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}, \operatorname{Ar} H), 10.36(2 \mathrm{H}, \mathrm{s}$, CHO); m / z : $452\left(\mathrm{M}^{+}\right)$(Found C, $77.01 ; \mathrm{H}, 8.74 . \mathrm{C}_{29} \mathrm{H}_{40} \mathrm{O}_{4}$ (452.64) requires $\mathrm{C}, 76.95 ; \mathrm{H}, 8.91 \%)$.

Compound $\mathbf{2 b}$ was similarly prepared in 67% yield.
1,6-Bis(5-tert-butyl-3-formyl-2-methoxyphenyl)hexane (2b): Colourless prisms (hexane), m.p. $108-109^{\circ} \mathrm{C} ; \mathrm{v}_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}: 1692(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right): 1.32(18 \mathrm{H}, \mathrm{s}, t \mathrm{Bu}), 1.42-1.53\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.59-1.70$ $\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.65-2.71\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.87(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 7.47(2 \mathrm{H}$, d, $J=2.4 \mathrm{~Hz}, \mathrm{Ar} H), 7.70(2 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}, \mathrm{Ar} H), 10.36(2 \mathrm{H}, \mathrm{s}$, CHO); m/z: $466\left(\mathrm{M}^{+}\right)$(Found C, 77.37; H, 9.18. $\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{O}_{4}$ (466.67) requires $\mathrm{C}, 77.21 ; \mathrm{H}, 9.07 \%)$.

General procedure for the McMurry coupling reaction of $\mathbf{2}$

The McMurry reagent was prepared from $\mathrm{TiCl}_{4}(23.8 \mathrm{~g}, 125 \mathrm{mmol})$ of and $18 \mathrm{~g}(275 \mathrm{mmol})$ of Zn powder in $500 \mathrm{~cm}^{3}$ of dry THF, under nitrogen. A solution of 1,6-bis(5-tert-butyl-3-formyl-2methoxyphenyl)hexane $\mathbf{2 b}(1.40 \mathrm{~g}, 3 \mathrm{mmol})$ in dry THF $\left(100 \mathrm{~cm}^{3}\right)$ was added within 60 h to the black mixture of the McMurry reagent by using a high-dilution technique with continuous refluxing and stirring. The reaction mixture was refluxed for an additional 8 h , cooled to room temperature, and hydrated with aqueous $10 \% \mathrm{~K}_{2} \mathrm{CO}_{3}$ $\left(200 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. The reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(3 \times 200 \mathrm{~cm}^{3}\right)$. The combined extracts were washed with water, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was chromatographed over silica gel (Wako C-300, 100 g) with hexane/benzene ($1: 1$) and benzene as eluents to give anti-3b ($65 \mathrm{mg}, 5 \%$) and syn-3b (130 mg , 10%), respectively. The CHCl_{3} eluent afforded crude meso-anti- $\mathbf{4 b}$ $(614 \mathrm{mg})$ as a pale brown oil. Since several attempted pure isolations failed, crude meso-anti- $\mathbf{4 b}$ was converted to diacetate. Thus a solution of crude meso-anti-4b in acetic anhydride ($3.5 \mathrm{~cm}^{3}$) and pyridine $7.5 \mathrm{~cm}^{3}$) was stirred at room temperature for 24 h . The reaction mixture was poured into a large amount of ice/water $\left(40 \mathrm{~cm}^{3}\right)$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \times 30 \mathrm{~cm}^{3}\right)$. The combined extracts were washed with $3 \% \mathrm{HCl}$ aq. $\left(2 \times 10 \mathrm{~cm}^{3}\right)$ and water, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was chromatographed over silica gel (Wako C-300, 200 g) with hexane: benzene 1:1 as eluent to give crude meso-anti-5b as a colourless solid. Recrystallisation from hexane gave 273 mg (16% from McMurry coupling reaction) of meso-anti$\mathbf{5 b}$ as colourless prisms.
anti-5,17-Di-tert-butyl-8,20-dimethoxy[2.6]metacyclophan-1-ene (anti-3b): Colourless prisms (MeOH), m.p. $114-115^{\circ} \mathrm{C} ; \mathrm{v}_{\max }(\mathrm{KBr}) /$ $\mathrm{cm}^{-1}: 2918,1480,1215,1114,1020,881,807,735 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$: $0.73-0.95\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.14-1.43\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.32(18 \mathrm{H}, \mathrm{s}$, $t \mathrm{Bu}), 2.18-2.32\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.58-2.82\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.13(6 \mathrm{H}, \mathrm{s}$, OMe), $6.56(2 \mathrm{H}, \mathrm{s}, C H), 7.02(2 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}, \mathrm{ArH}), 7.03(2 \mathrm{H}, \mathrm{d}$,
$J=2.4 \mathrm{~Hz}, \mathrm{Ar} H) ; m / z: 434\left(\mathrm{M}^{+}\right)$(Found C, $82.98 ; \mathrm{H}, 9.71 . \mathrm{C}_{30} \mathrm{H}_{42} \mathrm{O}_{2}$ (434.67) requires C, $82.90 ; \mathrm{H}, 9.74 \%$).
syn-5,17-Di-tert-butyl-8,20-dimethoxy[2.6]metacyclophan-1-ene (syn-3b): Colourless prisms (MeOH), m.p. $62-64^{\circ} \mathrm{C} ; \mathrm{v}_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$: $2962,1479,1327,1215,1019,883,810 ; \delta_{H}\left(\mathrm{CDCl}_{3}\right): 0.51-0.58(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2}\right), 0.77-0.93\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.01-1.35\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.11$ $(18 \mathrm{H}, \mathrm{s}, t \mathrm{Bu}), 2.25-2.28\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.75-2.89\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.67$ $(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.51(2 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}, \mathrm{Ar} H), 6.81(2 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}$, $\mathrm{Ar} H) 6.88(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}) ; \mathrm{m} / \mathrm{z}: 434\left(\mathrm{M}^{+}\right)$(Found C, 82.89; H, 9.79. $\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{O}_{2}$ (434.67) requires C, $82.90 ; \mathrm{H}, 9.74 \%$).
anti-13-endo-Acetoxy-14-endo-acetoxy-9,17-di-tert-butyl-12,20dimethoxy[6.2]metacyclophane (meso-anti-5b): Colourless prisms (hexane), m.p. $214-216^{\circ} \mathrm{C} ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}: 1744(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$: $0.51-0.93\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.32(18 \mathrm{H}, \mathrm{s}, t \mathrm{Bu}), 1.25-1.36\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, 1.42-1.58 (4H, m, CH2), $2.14(6 \mathrm{H}, \mathrm{s}, \mathrm{COMe}), 2.20-2.30(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2}\right), 2.41-2.53\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.46(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.25(2 \mathrm{H}, \mathrm{s}, \mathrm{CH})$, $7.04(2 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}, \mathrm{Ar} H), 7.36(2 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}, \mathrm{Ar} H) ; m / z$: $552\left(\mathrm{M}^{+}\right)$(Found C, 73.96; H, 9.05. $\mathrm{C}_{34} \mathrm{H}_{48} \mathrm{O}_{6}(552.76)$ requires C, 73.88; H, 8.75\%)

Compounds syn-3a and meso-anti-4a were similarly prepared in 27 and 32% yields, respectively.
syn-5,16-Di-tert-butyl-8,19-dimethoxy[2.5]metacyclophan-1-ene (syn-3a): Colourless prisms (MeOH), m.p. $125-127^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$: -0.90-0.10 (1H, m, CH2 $), 0.79-0.96\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.12(18 \mathrm{H}, \mathrm{s}$, $t \mathrm{Bu}), 1.10-1.22\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.53-1.69\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.07-2.18$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.91-3.02\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.70(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.58(2 \mathrm{H}$, d, $J=2.7 \mathrm{~Hz}, \mathrm{Ar} H), 6.68(2 \mathrm{H}, \mathrm{d}, J=2.7 \mathrm{~Hz}, \mathrm{Ar} H), 6.96(2 \mathrm{H}, \mathrm{s}, C H)$; $m / z: 420\left(\mathrm{M}^{+}\right)$(Found C, 82.55; H, 9.61. $\mathrm{C}_{29} \mathrm{H}_{40} \mathrm{O}_{2}(420.64)$ requires C, 82.81 ; H, 9.59%).
anti-12-endo-Hydroxy-13-endo-hydroxy-8,16-di-tert-butyl-11,19dimethoxy[5.2]metacyclophane (meso-anti-4a): Colourless prisms [hexane/benzene (5:1)], m.p. 224-226 ${ }^{\circ} \mathrm{C} ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}: 3386$ $(\mathrm{OH}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right): 1.32(18 \mathrm{H}, \mathrm{s}, t \mathrm{Bu}), 1.15-1.35\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, 1.98-2.11 (2H, m, CH 2), 2.48-2.59 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), $2.81(2 \mathrm{H}, \mathrm{s}, \mathrm{OH}$, replaced by $\left.\mathrm{D}_{2} \mathrm{O}\right), 3.32(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.85(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 6.93(2 \mathrm{H}, \mathrm{d}$, $J=2.4 \mathrm{~Hz}, \mathrm{Ar} H), 7.47(2 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}, \mathrm{ArH}) ; m / z: 454\left(\mathrm{M}^{+}\right)$(Found $\mathrm{C}, 76.44 ; \mathrm{H}, 9.33 . \mathrm{C}_{29} \mathrm{H}_{42} \mathrm{O}_{4}(454.66)$ requires $\left.\mathrm{C}, 76.61 ; \mathrm{H}, 9.31 \%\right)$.

Reaction of syn-[2.n]metacyclophan-1-enes (3) with BTMA Br_{3} typical procedure
To a solution of $\operatorname{syn}-\mathbf{3 a}(42 \mathrm{mg}, 0.10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(4 \mathrm{~cm}^{3}\right)$ was added BTMA $\mathrm{Br}_{3}(43 \mathrm{mg}, 0.11 \mathrm{mmol})$ at room temperature. After the reaction mixture was stirred at room temperature for 1 h , it was poured into a large amount of ice/water ($50 \mathrm{~cm}^{3}$) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(50 \mathrm{~cm}^{3} \times 2\right)$. The combined extracts were washed with water, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue recrystallised from hexane gave 56 mg (96%) of syn-12-endo-bromo-13-endo-bromo-8,16-di-tert-butyl-11,19-dimethoxy[5.2] metacyclophane (meso-syn-6a): Colourless prisms (hexane), m.p. $195-198^{\circ} \mathrm{C} ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}: 2962,1480,1461,1295,1205$, $1005,885,581 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right):-0.18-0.02\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 0.58-0.79$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.16(18 \mathrm{H}, \mathrm{s}, t \mathrm{Bu}), 1.52-1.78\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.05-2.27$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.72-2.93\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.66(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.55(2 \mathrm{H}$, s), $6.76(2 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}, \mathrm{Ar} H), 7.56(2 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}, \operatorname{Ar} H) ; m / z$: 578, 580, $582\left(\mathrm{M}^{+}\right)$(Found C, 59.81; H, 6.76. $\mathrm{C}_{29} \mathrm{H}_{40} \mathrm{Br}_{2} \mathrm{O}_{2}$ (580.45) requires $\mathrm{C}, 60.01 ; \mathrm{H}, 6.95 \%)$.

Compound meso-syn-6b was similarly prepared in 93% yield.
syn-13-endo-Bromo-14-endo-bromo-9,17-di-tert-butyl-12,20dimethoxy[6.2]metacyclophane (meso-syn-6b): Colourless prisms (hexane), m.p. $181-182^{\circ} \mathrm{C} ; \mathrm{v}_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}: 2962,1480,1461,1295$, $1205,1005,885,581 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right): 0.44-0.58\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 0.84-0.97$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.09-1.48\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.16(18 \mathrm{H}, \mathrm{s}, t \mathrm{Bu}), 2.25-2.39$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.70-2.84\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.65(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.33(2 \mathrm{H}$, s, CH), $6.89(2 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}, \mathrm{ArH}), 7.55(2 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}, \mathrm{Ar} H)$; $m / z: 592,594,596\left(\mathrm{M}^{+}\right)$(Found C, 60.91; H, 7.12. $\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{Br}_{2} \mathrm{O}_{2}$ (594.47) requires $\mathrm{C}, 60.61 ; \mathrm{H}, 7.12 \%)$.

Bromination of anti- $\mathbf{3 b}$ with $B T M A \mathrm{Br}_{3}$: To a solution of anti-3b $(22 \mathrm{mg}, 0.05 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \mathrm{~cm}^{3}\right)$ was added BTMA $^{2}(21.4 \mathrm{mg}$,
0.055 mmol) at room temperature. After the reaction mixture was stirred at room temperature for 1 h , it was poured into a large amount of ice/water $\left(50 \mathrm{~cm}^{3}\right)$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(50 \mathrm{~cm}^{3} \times 2\right)$. The combined extracts were washed with water, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give $21 \mathrm{mg}(71 \%)$ of a mixture of anti-13-endo-bromo-14-exo-bromo- (rac-anti-6b) and anti-13-exo-bromo-14-exo-bromo-9,17-di-tert-butyl-12,20-dimethoxy[6.2]metacyclophane (meso-anti-6b) in the ratio of 80:20 (determined by ${ }^{1} \mathrm{H}$ NMR spectrum) as colourless solid; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$: rac-anti- $\mathbf{6 b} ; 0.70-1.02$ $\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.29(9 \mathrm{H}, \mathrm{s}, t \mathrm{Bu}), 1.20-1.45\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.36(9 \mathrm{H}, \mathrm{s}$, $t \mathrm{Bu}), 2.03-2.20\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.75-2.90\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.20(3 \mathrm{H}, \mathrm{s}$, OMe), $3.36(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 5.51(1 \mathrm{H}, \mathrm{d}, J=3.9 \mathrm{~Hz}, C H), 5.78(1 \mathrm{H}, \mathrm{d}$, $J=3.9 \mathrm{~Hz}, C H), 6.92(1 \mathrm{H}, \mathrm{d}, J=2.9 \mathrm{~Hz}, \mathrm{Ar} H), 7.10(1 \mathrm{H}, \mathrm{d}$, $J=2.9 \mathrm{~Hz}, \mathrm{Ar} H), 7.13(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}, \mathrm{Ar} H), 8.04(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}$, $\mathrm{ArH})$; meso-anti-6b; 0.70-1.02 (4H, m, CH2), 1.07-1.43 (4H, m, $\left.\mathrm{CH}_{2}\right), 1.27(18 \mathrm{H}, \mathrm{s}, \mathrm{Bu}), 2.16-2.38\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.58-2.72(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2}\right), 3.65(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 5.98(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 6.95(2 \mathrm{H}, \mathrm{d}, J=2.4$ $\mathrm{Hz}, \mathrm{ArH}), 7.43(2 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}, \mathrm{ArH}) ; m / z: 592,594,596\left(\mathrm{M}^{+}\right)$ (Found C, 60.45; H, 7.26. $\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{Br}_{2} \mathrm{O}_{2}$ (594.47) requires $\mathrm{C}, 60.61$; H, 7.12\%).

Received 10 October 2007; accepted 7 November 2007
 Paper 07/4878 doi: 10.3184/030823407X262445

References

1 Medium-sized cyclophanes. part 76: J. Hu, R. Ueno, M. Miyazaki and T. Yamato, J. Chem. Res., 2007, 408.

2 M. Pelligrin, Recl. Trav. Chim. Pays-Bas Belg., 1899, 18, 458.
3 R.H. Mitchell, T.K. Vinod and G.W. Bushnell, J. Am. Chem. Soc., 1985, 107, 3340.
4 Y. Fujise, Y. Nakasato and S. Itô, Tetrahedron Lett., 1986, $27,2907$.
5 (a) R.H. Mitchell and V. Boekelheide, J. Am. Chem. Soc., 1974, 96, 1547; (b) Y.-H. Lai and H.-L. Eu, J. Chem. Soc., Perkin Trans. 1, 1993, 233.

6 H.A. Staab, W.R.K. Riebel and C. Krieger, Chem. Ber., 1985, 118, 1230
7 (a) R.E. Singler and D.J. Cram, J. Am. Chem. Soc., 1972, 94, 3512; (b) D.J. Cram, R.B. Hornby, E.A. Truesdale, H.J. Reich, M.H. Delton and J.M. Cram, Tetrahedron, 1974, 30, 1757.

8 T. Yamato, A. Miyazawa, K. Kobayashi, and M. Tashiro, J. Chem. Res. (S), 1991, 182.

9 (a) T. Yamato, J. Matsumoto, S. Ide, K. Suehiro, and M. Tashiro, Chem. Ber., 1993, 126, 447; (b) T. Yamato, M. Sato, K. Noda, J. Matsumoto and M. Tashiro, J. Chem. Res. (S) 1993, 394. (M) 2601.

10 (a) T. Yamato, K. Fujita, K. Futatsuki and H. Tsuzuki, Can. J. Chem., 2000, 78, 1089; (b) T. Yamato, K. Fujita and H. Tsuzuki, J. Chem. Soc., Perkin Trans. 1, 2001, 2089; (c) T. Yamato, S. Miyamoto, T. Hironaka and Y. Miura, Org. Lett., 2005, 7, 3.
11 (a) J.E. McMurry, M.P. Fleming, K.L. Kees and L.R. Krepski, J. Org. Chem., 1978, 43, 3255; (b) J.E. McMurry, Acc. Chem. Res., 1983, 16, 405; (c) J.E. McMurry, G.J. Haley, J.R. Matz, J.C. Clardy and G.V. Duyne, J. Am. Chem. Soc., 1984, 106, 5018; (d) J.E. McMurry, Chem. Rev., 1989, 89, 1513.
12 (a) T. Yamato, K. Fujita, K. Okuyama and H. Tsuzuki, New. J. Chem., 2000, 221; (b) T. Yamato, K. Fujita, T. Abe and H. Tsuzuki, New J. Chem., 2001, 25, 728.
13 T. Yamato, J. Matsumoto, M. Sato, K. Noda and M. Tashiro, J. Chem. Soc. Perkin Trans. 1, 1995, 1299.
14 H. -F. Grützmacher and E. Neumann, Chem. Ber., 1993, 126, 1495.
15 (a) Cyclophanes (P.M. Keehn and S.M. Rosenfield (eds)), Academic Press: New York, 1983, vols 1\&2; (b) F. Vögtle, Cyclophane-Chemistry, Wiley: Chichester, 1993.
16 (a) M. Tashiro and T. Yamato, J. Org. Chem., 1981, 46, 4556; (b) M. Tashiro and T. Yamato, J. Org. Chem., 1983, 48, 1461.
17 (a) M. Tashiro, T. Yamato and K. Kobayashi, J. Org. Chem., 1984, 49, 3380; (b) T. Yamato, J. Matsumoto, T. Ando, K. Tokuhisa and M. Tashiro, J. Chem. Res. (S), 1991, 276.

18 S. Kajigaeshi, T. Kakinami, H. Tokiyama, T. Hirakawa and T. Okamoto, Chem. Lett., 1987, 627.
19 T.G. Traylor, Acc. Chem. Res., 1969, 2, 152.
20 (a) M.J.S. Dewar and R.C. Fahey, J. Am. Chem. Soc., 1963, 85, 2245; (b) M.J.S. Dewar and R.C. Fahey, J. Am. Chem. Soc., 1963, 85, 2248; (c) J. Meinwald, Y.C. Meinwald and T.N. Baker, J. Am. Chem. Soc., 1963, 85, 2613.

[^0]: * Correspondent. E-mail: yamatot@cc.saga-u.ac.jp

